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Abstract The applicability of Bayesian conditionalization in setting one’s posterior
probability for a proposition, a, is limited to cases where the value of a corresponding
prior probability, PPRI(a|∧E), is available, where ∧E represents one’s complete body
of evidence. In order to extend probability updating to cases where the prior proba-
bilities needed for Bayesian conditionalization are unavailable, I introduce an infer-
ence schema, defeasible conditionalization, which allows one to update one’s
personal probability in a proposition by conditioning on a proposition that represents
a proper subset of one’s complete body of evidence. While defeasible conditionaliza-
tion has wider applicability than standard Bayesian conditionalization (since it may
be used when the value of a relevant prior probability, PPRI(a|∧E), is unavailable),
there are circumstances under which some instances of defeasible conditionalization
are unreasonable. To address this difficulty, I outline the conditions under which
instances of defeasible conditionalization are defeated. To conclude the article, I
suggest that the prescriptions of direct inference and statistical induction can be
encoded within the proposed system of probability updating, by the selection of
intuitively reasonable prior probabilities.
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1 Introduction: Conditionalization and the Principle of Total Evidence

Given a conjunction ∧E representing an agent’s complete body of evidence, and a
prior probability function PPRI, standard Bayesian conditionalization prescribes that
an agent form a posterior probability function PPOS, and set the values of PPOS
according to the equation: PPOS að Þ ¼ PPRI aj^Eð Þ, for all a. This approach to
probability updating makes the idealizing assumption that rational agents always
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have access to a prior probability function that is appropriate as a basis for condition-
alization (cf. [11]). But, as a matter of psychological fact, an agent’s doxastic state rarely
encodes all of the priors needed for Bayesian conditionalization, and agents are rarely in
a position to fill in all of the needed priors in a way that is justifiable by appeal to
acceptable epistemic norms.1 In order to extend probability updating to cases where the
prior probabilities needed for Bayesian conditionalization are unavailable, I will propose
a system for probability updating for agents whose prior probabilities are incomplete
and/or imprecise. The system is thereby designed to accommodate approaches to
rational credence formation that endorse probabilistic representations of uncertainty,
but are not prepared to accept the idea that we must invariably represent a rational
agent’s doxastic state by a complete probability function.2

The Bayesian idea that one should update one’s probabilities by conditionalization on
one’s complete body of evidence is closely related to Carnap’s principle of total evidence
([3], 211). The principle of total evidence, as proposed by Carnap, prescribes that one
take account of all one’s evidence in making judgments of probability, or, more
generally, that one take account of all of one’s evidence that is relevant to a given
proposition, in making a judgment about the probability of that proposition. While
Carnapmaintains that, strictly speaking, agents need only take account of all the relevant
evidence, he also held that a proposition, β, is inclusive of an agent’s evidence that is
relevant to another proposition, a, if and only if PPRI ajbð Þ ¼ PPRI aj^Eð Þ. Carnap
thereby embraced the thesis that agents should update their probabilities by standard
Bayesian conditionalization, setting PPOS að Þ to PPRI aj^Eð Þ, for all a.

Contrary to Carnap’s conception of evidential relevance, a little reflection confirms
that the satisfaction of the condition that PPRI ajbð Þ ¼ PPRI aj^Eð Þ is not sufficient for
β being inclusive of an agent’s evidence bearing on a. Indeed, ∧E may encode much
additional evidence, not encoded in β, that is relevant to a, where PPRI ajbð Þ ¼
PPRI aj^Eð Þ holds by coincidence. For example , we may know that
PPRI ajbð Þ ¼ 0:9; PPRI ajb^cð Þ ¼ 0:1, and PPRI ajb^c^dð Þ ¼ 0:9, where ∧E =
β∧χ∧δ, and where β, β∧χ, and β∧χ∧δ describe progressively larger samples that
bear on the probability of a.3 It is also reasonable to deny that PPRI ajbð Þ ¼
PPRI aj^Eð Þ is a necessary condition for β being inclusive of an agent’s evidence
bearing on a, assuming that we consider agents whose prior probabilities are incom-
plete or imprecise. Indeed, once we extend our view to consider such agents, then it is
possible to imagine cases where β is inclusive of an agent’s evidence bearing on a,
where the value of PPRI(a|∧E) is not given, or the range of values given for PPRI(a|∧E)
is imprecise (where the smallest set containing PPRI(a|∧E) is [0, 1], or the range of
values that are given for PPRI(a|β) is a proper subset of the range of values given for
PPRI(a|∧E)). In such cases, we may deny that PPRI ajbð Þ ¼ PPRI aj^Eð Þ (or at least

1 It is assumed here that various ‘representation dependent’ approaches to selecting probability functions,
such as those that apply the principle of indifference ([2, 3, 6, 16], [6, ch. 11]), or the principle of maximum
entropy ([12, 29, 30, 51]) cannot be justified by appeal to acceptable epistemic norms. For standard
criticisms of such approaches, see [45] and [11].
2 Such approaches have been widely endorsed. See, for example, [5, 14, 17, 19, 22, 24, 39, 46, 49], and
[15].
3 Although the condition that PPRI(a|β) = PPRI(a|∧E) is insufficient forβ being inclusive of an agent’s evidence
bearing on a, it appears that the satisfaction of the condition is sufficient ground for setting PPOS(a) to
PPRI(a|β). For this reason, one should not exaggerate the significance of the fact that PPRI(a|β) = PPRI(a|∧E)
is insufficient for β being inclusive of an agent’s evidence bearing on a.
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deny that it is given that PPRI ajbð Þ ¼ PPRI aj^Eð Þ), while nevertheless accepting: (1)
β is inclusive of a respective agent’s evidence bearing on a, and (2) it is correct to set
PPOS(a) to PPRI(a|β).

4

One point made in the preceding paragraph is that there are cases where
PPRI ajbð Þ ¼ PPRI aj^Eð Þ, but β is not inclusive of one’s evidence bearing on a.
In such cases, it is reasonable to set PPOS(a) to PPRI(a|β) (i.e., reasonable to
update one’s probability for a to the value PPRI(a|β)), despite the fact that β is
not inclusive of one’s evidence bearing on a. A second point is that there are
cases where it is correct to set PPOS(a) to PPRI(a|β), even though it is not given
that PPRI(a|β) is identical to PPRI(a|∧E). Having accepted these possibilities, I
would also like to entertain the possibility that there are cases where it is
reasonable to conclude that PPOS(a)∈R on the basis of PPRI(a|β)∈R, even
though (1) β is not inclusive of one’s evidence bearing on a, and (2) it is
not given that PPRI(a|β) = PPRI(a|∧E). For the moment, one need not accept the
possibility of such cases. However, I wish to introduce a catch-all expression to
describe the relationship between β and a, in cases where it is correct to set
PPOS(a) to PPRI(a|β), or more generally when it is correct to conclude that
PPOS(a)∈R on the basis of PPRI(a|β)∈R. In such cases, I will say that β is
sufficiently inclusive of one’s evidence bearing on a.

The idea of conditioning on propositions that are sufficiently inclusive of one’s
relevant evidence (as opposed to conditioning on propositions that encapsulate all of
one’s evidence) is central to the approach to probability updating proposed in this
article. The proposed system thus allows one to assign a posterior probability to a
respective proposition a, in cases where the value of PPRI(a|∧E) is not given, but the
value of another prior probability PPRI(a|β) is given, and it is reasonable to accept that
β is sufficiently inclusive of one’s evidence bearing on a. The proposed system also
accommodates the possibility of conditionalizing on imprecise conditional probabil-
ity statements, thereby allowing one to judge that PPOS(a)∈R, when PPRI(a|β)∈R is
given, and it is reasonable to accept that β is sufficiently inclusive of one’s evidence
bearing on a. In cases where an agent has access to a complete prior probability
function, the system that I propose prescribes posterior probabilities that are identical
to the ones prescribed by the standard Bayesian approach. But in cases where an
agent’s prior probabilities are incomplete or imprecise (and the standard Bayesian
approach is not applicable), the system still recommends reasonable posterior prob-
ability judgments.

Despite some important differences, the system of probability updating that I will
propose is a close relative of the standard Bayesian system. Like the standard
Bayesian system, the proposed system is very general, promising to reduce the
prescriptions of rational credence formation to the prescription that one update one’s
personal probabilities by (a form of) conditionalization, and to prescriptions

4 One could, of course, maintain the thesis that one is entitled to infer that PPRI(a|β) = PPRI(a|∧E), in cases
where it is reasonable to accept that β is inclusive of one’s evidence bearing on a (cf. [37]). I regard this
thesis as potentially suspect. Nevertheless, one could augment the system of probability updating that I
propose, and adopt the conclusion that PPRI(a|∧E) = PPRI(a|β), whenever the proposed system permits the
conclusion that PPOS(a)∈R via conditionalization on a prior PPRI(a|β)∈R. However, since the inference to
PPRI(a|∧E) = PPRI(a|β), in such cases, is unnecessary and potentially suspect, the system of updating that I
propose does not license such inferences.
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concerning the choice of prior probabilities.5 A common variety of the standard
Bayesian framework prescribes only that an agent’s priors be probabilistically coher-
ent. Later in the article, I will sketch the advantage of accepting additional prescrip-
tions on the choice of prior probabilities. The advantage lies in the possibility of
encoding the prescriptions of direct inference and statistical induction within the
proposed system via the choice of intuitively reasonable prior probabilities.

2 Preliminaries

I will use a, b, c, and d to represent atoms of a propositional languageΦ (with the standard
truth functional connectives), and use a and β as metalogical variables ranging over
sentences ofΦ. Given this simple language, I will proceed as if the input to the problem of
probability updating is a ‘knowledge base’K, consisting of a pair 〈EK, LK〉, where EK is a
set of sentences ofΦ, and LK is a set of prior conditional probability statements of the form
PPRI(a|β)∈R, where a andβ are sentences ofΦ, and R is a rigid designator for a set of real
numbers. I will also use ρ and σ as metalogical variables ranging over prior conditional
probability statements of the form PPRI(a|β)∈R. And, as shorthand, I will occasionally use
expressions of the form PPRI(a|β) = r in the place of PPRI(a|β)∈{r}, and expressions of the
form PPRI(a|β) ≥ r in the place of PPRI(a|β)∈[r, 1]. For real life applications, it is clear that
Φwould have to be replaced by a richer language. However, due to limitations in standard
axiomatic approaches to probability theory, which treat probability as defined over a
Boolean algebra or a propositional language, I will proceed by means of an appropriately
simple language, and assume (especially in Section 7) that the account can be generalized
to apply to richer languages (cf. [32]).

Facts about the consistency or inconsistency of various sets will play a role in
determining which conclusions should be inferred from a knowledge base. I will
speak both of the inconsistency of sets of sentences of Φ, and of sets of
probability statements. A set of sentences of Φ is inconsistent if and only if
a∧¬a is a logical consequence of the set. A set of posterior probability state-
ments, S, will be regarded as inconsistent if and only if there is no probability
assignment, P, defined over Φ, such that 8s 2 S : s ¼ PPOS að Þ2R ) P að Þ 2 R:6

5 The standard Bayesian approach usually assumes that the updating of personal probabilities proceeds
iteratively, where subsequent to an initial update (by conditionalization by appeal to an initial prior probability
function), further updates proceed by appeal to a prior probability function that was generated by condition-
alization on evidence that was collected at an earlier time (so that non-initial priors encode some of the agent’s
evidence). In contrast to this ‘iterative’ approach to probability updating, I assume that defeasible condition-
alization always proceeds by conditionalization using the agent’s initial prior probability function. In the case of
Bayesian conditionalization, the usual iterative approach to probability updating is equivalent to the approach
where an agent always sets his posteriors by conditionalization on his complete body of evidence using his
initial prior probability function. This sort of equivalence does not hold for probability updating via defeasible
conditionalization (absent some constraints on the set of possible prior probabilities). The equivalence between
the two approaches to conditionalization also fails to hold, in general, for Jeffrey Conditionalization [13]. But
see [48], where it is shown that Jeffrey’s rule does commute across order for identical learning inputs, provided
that “identical learning” is appropriately construed and formalized (cf. [28]).
6 P is a probability assignment defined over Φ if and only if P maps all of the formulas of Φ into the interval
[0, 1], so that Kolmogorov’s Axioms are satisfied. That is: ∀a,β∈Φ: (1) P(a) ≥0, (2) if a is a tautology, then
P(a) = 1, and (3) if {a, β} is inconsistent, then P(a∨β) = P(a) + P(β). P(a|β) is defined as equal to P(a∧β)/
P(β), if P(β) ≠ 0 (otherwise P(a|β) is undefined).
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Similarly, a set of prior probability statements, S, will be regarded as inconsistent
if and only if there is no probability assignment, P, defined over Φ, such that
8s 2 S : s ¼ PPRI ajbð Þ2R ) P ajbð Þ2R.

In addition to speaking of the logical consequences of sets of sentences of Φ, I will
speak of the logical consequences of sets of probability statements. A probability
statement, PPOS(a′)∈R′, will be described as a logical consequence of a set of
posterior probability statements, S, if and only if for every probability assignment,
P, defined over Φ, if 8s 2 S : s ¼ PPOS að Þ2R ) P að Þ 2 R, then P(a′) ∈ R′. Simi-
larly, a prior probability statement, PPRI(a′|β′)∈R′, will be described as a logical
consequence of a set of prior probability statements, S, if and only if for every probability
assignment, P, defined over Φ, if 8s2S: s ¼ PPRI að jbÞ2R ) P ajbð Þ 2 R, then
P(a′|β′) ∈ R′.

Unless otherwise stated, I will assume that EK and LK are consistent and closed
under logical consequences (though the system also performs reasonably in the case
where EK and/or LK are inconsistent).

3 Defeasible Conditionalization

In the case where one’s knowledge base is K, the principle of total evidence licenses
the conclusion that PPOS(a) = r, when PPRI ajbð Þ ¼ r 2 LK; b 2 EK, and β is suffi-
ciently inclusive of one’s evidence bearing on a. Generalized to set-valued priors, the
principle of total evidence licenses the conclusion that PPOS(a)∈R, in the case where
PPRI ajbð Þ2R 2 LK; b 2 EK, and β is sufficiently inclusive of one’s evidence bearing
on a. So generalized, we may regard any inference from premises of the form
PPRI ajbð Þ2R 2 LK and β ∈ EK to a conclusion of the form PPOS(a)∈R as a defeasible
inference, where the inference is defeated if and only if β is not sufficiently inclusive
of one’s evidence bearing on a.7 The heart of this species of defeasible inference is
encoded in the following schema.

[d-cond] Defeasible Conditionalization
PPRI ajbð Þ2R 2 LK and β ∈ EK provides a defeasible justification (or reason) for
inferring (and believing) PPOS(a)∈R (for an agent whose knowledge base is K).

A defeasible justification that is generated in accordance with [d-cond] is, of
course, defeated in the case where β is not sufficiently inclusive of an agent’s
evidence bearing on a. What we would like to know are the precise conditions under
which an instance of [d-cond] is defeated, or, in effect, the conditions under which β
is not sufficiently inclusive of an agent’s evidence bearing on a. To begin with, it is
clear that a corresponding instance of [d-cond] is defeated, when there exists a
proposition, β′, such that β′ is in EK, {β′} entails β, PPRI(a|β′)∈R′ is in LK, and
R∩R′ = ∅. In other words:

7 The notions of defeasible reason, defeasible justification, and defeasible inference were pioneered within
academic philosophy by Hart [7], Chisholm [4], Toulmin [43], Pollock [31], and Rescher [36]. Similar
ideas were independently developed by researchers in artificial intelligence, including [25, 26], and [35].
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[s-spec] Simple Specificity Defeat
The justification for inferring PPOS(a)∈R from PPRI(a|β)∈R ∈ LK and β ∈ EK is
defeated, if ∃β′,R′: β′ ∈ EK, {β′} entails β, PPRI(a|β′)∈R′ ∈ LK, and R∩R′ = ∅.8

[s-spec] applies when a more inclusive survey of one’s evidence supports a conclusion
that conflicts with the one supported by a proposed instance of [d-cond]. For example,
suppose that LK is the deductive closure of PPRI ajbð Þ ¼ 0:1; PPRI ajb^cð Þ ¼ 0:9f g, and
EK is the deductive closure of {b, c}. In this case [d-cond] provides a defeasible
justification for inferring PPOS(a) = 0.1 (by appeal to PPRI ajbð Þ ¼ 0:1 2 LK and b ∈
EK), and a defeasible justification for inferring PPOS(a) = 0.9 (by appeal to
PPRI ajb^cð Þ ¼ 0:9 2 LK and b^c 2 EK). However, since b∧c entails b, [s-spec] pre-
scribes the defeat of the inference to PPOS(a) = 0.1.

While [s-spec] expresses a sufficient condition for the defeat of corresponding
instances of [d-cond], [s-spec] does not characterize the full range of cases under
which instances of [d-cond] are defeated. Indeed, there are cases where [d-cond]
provides a defeasible justification for each element of an inconsistent set, while [s-
spec] fails to dictate the defeat of any of the inferences leading to the elements of the
inconsistent set. For example, suppose that LK is the deductive closure of
PPRI ajbð Þ ¼ 0:1; PPRI ajcð Þ ¼ 0:9f g, and EK is the deductive closure of {b, c}. In

that case, [d-cond] provides a defeasible justification for inferring PPOS(a) = 0.1 (by
appeal to PPRI ajbð Þ ¼ 0:1 2 LK and b 2 EK), and a defeasible justification for infer-
ring PPOS(a) = 0.9 (by appeal to PPRI ajcð Þ ¼ 0:9 2 LK and c ∈ EK). While the present
knowledge base yields a defeasible justification for two mutually inconsistent con-
clusions (namely PPOS(a) = 0.1 and PPOS(a) = 0.9), [s-spec] fails to dictate the defeat
of either of inferences that lead to the inconsistency, since the neither of the
propositions that underwrite the two inferences (namely, b and c) entails the other.
Since [s-spec] will not always dictate the defeat of at least one instance of [d-cond] in
the case where inference by [d-cond] leads to an inconsistent set of conclusions, we
know that additional defeat conditions are called for.

4 Minimal Inconsistent Sets

In cases where a set is inconsistent and has no inconsistent proper subsets, the set is said to
beminimal inconsistent. As a prelude to proposing a fully general account of the conditions
under which instances of [d-cond] are defeated, I begin by considering hypothetical cases
where S ¼ PPOS a1ð Þ2R1; . . . ; PPOS anð Þ2Rnf g is the complete set of conclusions that
are defeasibly justified via instances of [d-cond] from K, and S is minimal inconsistent.
Such cases are impossible, on the assumption that EK and LK are closed under deductive

8 Specificity rules are common in theories of default and defeasible reasoning (cf. [37, 38]). In some
systems such as Pollock’s [32], defeasible inferences are modeled after direct inference, where specificity
rules correspond to a preference for narrower reference classes in the selection of a statistical probability
statement for use as a premise for a direct inference. Appeal to specificity rules in direct inference traces to
Venn [47], though the idea is also associated with Reichenbach [34] and Hempel [8]. The appeal to
specificity proposed here is more in line with Carnap’s principle of total evidence, since the type of
probabilities involved in defeasible conditionalization are not statistical.
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consequences. Nevertheless, it is instructive to consider such cases, so in the present
section, I waive the assumption that EK and LK are deductively closed.

Let Scond ¼ PPRI a1jb1ð Þ2R1; . . . ; PPRI anjbnð Þ2Rnf g be the set of conditional
probability statements that led to the elements of S via instances of [d-cond], and
let Spre be the set {β1, …, βn} of ‘preconditions’ for the elements of Scond. Although
[s-spec] does not prescribe the defeat of any of the respective instances of [d-cond]
that lead to S (so long as n is greater than two), we know that we must reject at least one
element of S (and we know that at least one of the corresponding instances of [d-cond] is
defeated).9 While [s-spec] is unhelpful in addressing such cases, it is still reasonable to
consider which elements of Scond have more informative preconditions, in deciding which
instances of [d-cond] are defeated. As a means to characterizing the relative informative-
ness of pairs of propositions, I will say: a strictly entailsβ if and only if {a} entailsβ, and
{β} does not entail a. Then, to start with, the following principle is plausible:

(a) If S is the complete set of conclusions defeasibly inferable from K via [d-cond],
and S is minimal inconsistent, then the defeasible justification for inferring
PPOS(a)∈R from PPRI ajbð Þ2R2 LK and β∈EK is undefeated, if ∃βi∈Spre: β
strictly entails βi.

Principle (a) tells us that an instance of [d-cond] is undefeated provided that its
associated precondition is more specific than the precondition of at least one of its
competitors. The principle is reasonable for the range of cases under consideration. In
such cases, the only potential reason for rejecting the conclusion under consideration,
PPOS(a)∈R, is that it is an element of a set of defeasible conclusions S, where S is
minimal inconsistent. But then there is no good reason to reject the inference to
PPOS(a)∈R in such cases, since one of the other elements of S (call the element “φ”)
is obtained without consideration of some evidence upon which the inference to
PPOS(a)∈R is based, while the conclusion that φ is not based on any evidence that is
not also taken account of in the justification for PPOS(a)∈R. We may thus consider the
inference to PPOS(a)∈R undefeated, since absent the inference to φ (which is based
on strictly less evidence) there would be no problem with the inference to PPOS(a)∈R.

The guiding assumption that underlies (a) is that the only condition that may result
in the defeat of an instance of [d-cond] is that its conclusion is inconsistent with the
conclusions of other instances of [d-cond] supported by a respective knowledge base.
This guiding assumption is reflected in the fact that (a) deems an instance of [d-cond]
as undefeated provided there is some other instance of [d-cond] (based on a less
inclusive survey of the available evidence) that can be isolated as the source of the
trouble. Given its guiding assumption, one possible objection to (a) cites the phe-
nomena of undercutting defeaters. An undercutting defeater for a defeasible inference
is a defeater which defeats the defeasible inference without providing a reason for
believing the negation of the conclusion of the defeated inference (cf. [33]).

9 If [s-spec] is applicable in defeating an instance of [d-cond] that is supported by a given knowledge base
K, then there is a pair of posterior probabilities PPOS(a)∈R and PPOS(a)∈R′, where R⋂R′ = ∅, and
PPOS(a)∈R and PPOS(a)∈R′ are defeasibly justified via instances of [d-cond] from K. But {PPOS(a)∈R,
PPOS(a)∈R′} is minimal inconsistent. So if S is the complete set of conclusions that are defeasibly justified
via instances of [d-cond] from K, S is minimal inconsistent, and |S| >2, then [s-spec] does not prescribe the
defeat of any of the respective instances of [d-cond] that led to S.
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According to the proposed objection to (a), an instance of [d-cond] may be defeated
for some reason other than that it is jointly responsible in generating an inconsistency.

The positing of the phenomena of undercutting defeaters is typically justified by
appeal to examples. According to one example, something’s appearing to be red
provides one with a defeasible reason for thinking that it is red. However, if one
learns that an object is illuminated by red light, then this defeats, and supposedly
undercuts, one’s reason for thinking that the object is red (assuming one knows that
most objects appear red when illuminated by red light). As described, the present
example exemplifies the phenomena of undercutting defeat assuming: (1) knowing
that an object is illuminated by red light defeats one’s reasons for thinking that the
object is red, and (2) knowing that an object is illuminated by red light does not
provide a reason for denying that the object is red.

As it turns out, the framework of defeasible inference proposed here is equipped to
accommodate the sort of examples offered in favor of the phenomena of undercutting
defeat. Crucially, such examples can be represented within the proposed framework
as cases that do not involve undercutting defeat, thereby eliminating the justification
for positing undercutting defeaters, and the plausibility of the proposed objection to
(a). For example, we can represent the situation of an object illuminated by red light
via a knowledge base containing the following priors:

PPRI(ϕ is red | ϕ is an object) ∈ [0.01, 0.02]
PPRI(ϕ is red | ϕ is an object ∧ ϕ appears to be red) ∈ [0.99, 0.995]
PPRI(ϕ is red | ϕ is an object ∧ ϕ appears to be red ∧ ϕ is illuminated by red
light) ∈ [0.01, 0.02]

In the case where it is given that ϕ is an object (and it is not given that ϕ appears to
be red), the preceding priors support the conclusion that ϕ is not red (or, more
precisely, that the probability is very low that ϕ is red). In the situation where it is
given that ϕ is an object and ϕ appears to be red (and it is not given that ϕ is
illuminated by red light), the priors support the conclusion that ϕ is red (with high
probability). On the other hand, the latter conclusion is defeated, in the situation
where it is also given that ϕ is illuminated by red light. In the latter situation, we may
assume that EK is the deductive closure of {ϕ is an object, ϕ appears to be red, ϕ is
illuminated by red light}. In that case, the inference to PPOS(ϕ is red) ∈ [0.01, 0.02]
based on PPRI(ϕ is red | ϕ is an object) ∈ [0.01, 0.02] is defeated via [s-spec] by
appeal to PPRI(ϕ is red | ϕ is an object ∧ ϕ appears to be red) ∈ [0.99, 0.995], and the
inference to PPOS(ϕ is red) ∈ [0.99, 0.995] based on PPRI(ϕ is red | ϕ is an object ∧ ϕ
appears to be red) ∈ [0.99, 0.995] is defeated via [s-spec] by appeal to PPRI(ϕ is red |ϕ is
an object ∧ ϕ appears to be red ∧ ϕ is illuminated by red light) ∈ [0.01, 0.02]. Thus, we
are permitted to infer that PPOS(ϕ is red) ∈ [0.01, 0.02] by appeal to PPRI(ϕ is red | ϕ is
an object ∧ ϕ appears to be red ∧ ϕ is illuminated by red light) ∈ [0.01, 0.02].

The preceding reconstruction illustrates the manner in which the present frame-
work accommodates the type of examples that motivate the positing of undercutting
defeaters. The examples are accommodated via the expressive power of probability
assignments and judgments about probabilities. The sort of example that the frame-
work does not accommodate (as it stands) is one where an instance of [d-cond] is
defeated in the absence of a prior probability that supports an instance of [d-cond] to a
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conflicting conclusion. But the demand to accommodate this kind of example has no
intuitive purchase, since the proposed account of probability updating already accom-
modates the kinds of example that have been offered in favor of the phenomena of
undercutting defeat.10

As it turns out, I think that (a) characterizes the full set of instances of [d-cond] that
are undefeated, in the case where S is the complete set of conclusions defeasibly
inferable from K via [d-cond], and S is minimal inconsistent. To see the reason,
consider, in the abstract, the set of instances of [d-cond] that are not classified as
undefeated by (a). It appears that there is no sound means by which we may exonerate
any of these inferences. For this reason, it is advisable to conclude that each instance
of [d-cond] that is not classified as undefeated by (a) is defeated. The present
conclusion is encapsulated by the following principle:

(b) If S is the complete set of conclusions defeasibly inferable from K via [d-cond],
and S is minimal inconsistent, then the defeasible justification for inferring
PPOS(a)∈R from PPRI(a|β)∈R ∈ LK and β ∈ EK is defeated if and only if
∀βi∈Spre: β does not strictly entail βi.

It may be objected here that, among the inferences that are classified as defeated by
(b), there is an intuitive difference between those that are based on a prior,
PPRI(a|β)∈R, for which there exists a βi in Spre such that βi strictly entails β, and
those for which there exists no such βi. The former inferences have the shortcoming
that their precondition is less inclusive of the available evidence than the precondition
of another instance of [d-cond] that leads to an element of S. Despite this shortcoming
of the former instances of [d-cond], there is little to be said in favor of the latter
instances of [d-cond], and there is no positive argument of the sort that justified (a)
that can be invoked in their favor. For this reason, I recommend a cautious approach
in classifying instances of [d-cond] as undefeated, and assume that (b) is correct for
the range of cases under consideration.11

10 Nevertheless, it would not be difficult to accommodate genuine instances of undercutting defeat. To do
so, we would allow that LK include statements of a three place relation of the form ⊗ (χ, a, β), which
asserts that χ is an undercutting defeater for instances of [d-cond] based on priors of the form PPRI(a|β)∈R
(cf. [33]). In the case where χ is in EK, instances of [d-cond] based on such priors, PPRI(a|β)∈R, would
thereby be defeated, and removed from consideration prior to the application of the defeat conditions
proposed in the body of this paper. The defeat of such priors would be handled by modifying the definition
of Triggered(K) (in Section 6) as follows: TriggeredðKÞ ¼ fPPRIðajbÞ2R j PPRIðajbÞ2R 2 LK & b 2
EK & PPRIðajbÞ2R =2 RedundantðKÞ & 8c2EK: �ðc;a; bÞ =2 LKg.
11 A less cautious system of defeasible conditionalization (that accepts the importance of the distinction
between the former and latter inferences) would accept the following defeat condition: If S is the complete
set of conclusions defeasibly inferable from K via [d-cond], and S is minimal inconsistent, then the
defeasible justification for inferring PPOS(a)∈R from PPRI(a|β)∈R ∈ LK and β ∈ EK is undefeated if and
only if ∃βi∈Spre: β strictly entails βi, or (∀βi∈Spre: βi does not strictly entail β, and ∃βj,βk∈Spre: βj strictly
entails βk). This less cautious approach to probability updating could then be generalized in a manner
analogous to the cautious approach to probability updating proposed in Section 6, so that ρ is preferred in Γ
⇔ (∃σ: σ∈Γ & Precondition(ρ) strictly implies Precondition(σ)) or (∀σ∈Γ:Precondition(σ) does not
strictly entail Precondition(ρ) & ∃σj,σk∈Γ: Precondition(σj) strictly entails Precondition(σk)). For all
knowledge bases, the set of conclusions licensed by the presently described system of defeasible con-
ditionalization is a superset of the set of conclusions licensed by the system of defeasible conditionalization
described in the body of this article.
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The principles (a) and (b) are intended to apply to cases where S is the complete set of
conclusions inferable from K via [d-cond], and S is minimal inconsistent. For such cases,
the two principles are complete in the sense that they partition the set of inferences leading
to the elements of S into those that are defeated, and those that are undefeated. For such
cases, adherence to the two principles also guarantees that the use of defeasible condition-
alization will not generate mutually inconsistent conclusions, since the two principles
insure the defeat of at least one of the instances of [d-cond] leading to the elements of S.

Although principles (a) and (b) do not appear among the general defeat conditions
that I propose in Section 6, the principles are instructive, since they capture some of the
key intuitions that underlie the general defeat conditions. A central idea implemented
within the general defeat conditions is that of evaluating the defeat and non-defeat of
instances of [d-cond] relative to sets of priors that support inferences to minimal
inconsistent sets of conclusions. In particular, the general defeat conditions treat an
instance of [d-cond] as defeated if it is defeated in the manner of (b) relative to any set of
priors that support instances of [d-cond] to a minimal inconsistent set of conclusions.

Before proceeding to propose general defeat conditions for instances of [d-cond],
the following section addresses two types of prior probability statement that require
special treatment.

5 Derivative and Partially Derivative Priors

Notwithstanding the preceding discussion, the system of probability updating pro-
posed in the present article assumes that EK and LK are deductively closed. This
introduces some issues not faced by many standard systems of defeasible inference.
Consider the following example:

Example 1
Let EK be the deductive closure of {a, b}, and let LK be the deductive closure of
PPRI cjað Þ � 0:9; PPRI djbð Þ � 0:9;f PPRI :cja^bð Þ ¼ 1g.

In the present case, the set of conclusions (defeasibly) licensed via [d-cond]
includes: PPOS cð Þ � 0:9; PPOS dð Þ � 0:9, and PPOS(¬c) = 1. The conclusion that
PPOS(c) ≥ 0.9 is inconsistent with the conclusion that PPOS(¬c) = 1, and for
this reason it is clear that we should regard the inference to PPOS(c) ≥ 0.9 as
defeated (since the inference to PPOS(¬c) = 1 is based on the broadest possible
survey of the available evidence). On the other hand, the inference to PPOS(d)
≥ 0.9 is unproblematic. So K appears to provide an undefeated justification for
inferring PPOS(d) ≥ 0.9. But there is a difficulty here, arising from the
assumption that LK is closed under logical consequences. The difficulty
derives from the fact that, for all a, LK entails PPRI(a∨c|a) ≥ 0.9. On the
basis of such priors, and in the absence of special provisions, [d-cond] would
license inference to conclusions of the form PPOS(a∨c) ≥ 0.9, for all a. And if
such inferences are licensed, K would thereby generate a defeasible justifica-
tion for inferring PPOS(a) ≥ 0.9, for all a (since K also licenses acceptance of
PPOS(¬c) = 1). It is plausible to think that the chains of inference leading to conclusions
of the form PPOS(a) ≥ 0.9 (for the respective a) are mutually defeating. But absent some
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special measures, the inference to the conclusion that PPOS(d) ≥ 0.9 would also be
defeated, since the inference to PPOS(d) ≥ 0.9 would be in conflict with a host of
conclusions inferable from various instances of PPRI(a∨c|a) ≥ 0.9 (such as the
instance PPRI(¬d∨c|a) ≥ 0.9, for example).

Inference to the conclusion that PPOS(a∨c) ≥ 0.9, for varied a, in Example 1,
proceeds from the prior PPRI(a∨c|a) ≥ 0.9. But the conclusion also indirectly derives
from the prior PPRI(c|a) ≥ 0.9. In this case, I propose that the deductive connection
between PPRI(c|a) ≥ 0.9 and PPRI(a∨c|a) ≥ 0.9 vitiates [d-cond] based on the latter
prior, since [d-cond] based on the former prior is defeated. And, in general, I propose
that an instance of [d-cond] is defeated when (1) the prior from which it proceeds is
‘derivative’ of another prior, and (2) the instance of [d-cond] proceeding from the
latter prior is defeated. The following definition specifies when one prior counts as
derivative of another:

Definition PPRI(a|β)∈R is derivative of PPRI(a′|β)∈R′ if and only if (1) a′ strictly
implies a, and R = R′, or (2) a′ is a, and R′ ⊂ R.

The application of condition (1), of the preceding definition, is used in handling the
sort of problem generated by Example 1. The application of condition (2) yields the
result that instances of [d-cond] based on priors of the form PPRI(a|β)∈R are defeated,
when another instance of [d-cond] based on a prior PPRI(a|β)∈R′ is defeated, and R′ ⊂R.
The latter policy is correct, since the defeat of an instance of [d-cond] based on a prior
PPRI(a|β)∈R′, and evidence β, undermines all instances of [d-cond] to conclusions
regarding a based on evidence β (assuming that correct instances of [d-cond] are meant
to be underwritten by the principle of total evidence).12

Within the general defeat conditions proposed in Section 6, I treat all instances of
[d-cond] based on priors that are derivative of some other element of LK as void,
where such void instances of [d-cond] are removed from consideration prior to
considering what conclusions to draw on the basis of other instances of [d-cond]
(thereby permitting the inference to PPOS(d) ≥0.9 to go through unmolested, in
Example 1). The policy of treating all derivative priors as void is reasonable, since
‘voided’ priors are indirectly represented by the priors from which they are derivative,
within the ‘normal’ procedure for determining which instances of [d-cond] are
defeated. The set of priors that are derivative of some other element of LK (of a
respective knowledge base K) are collected according to the following definition.

Definition RedundantðKÞ ¼ fPPRIðajbÞ2R j PPRIðajbÞ2R is derivative of

PPRIða0jbÞ2R0
& PPRIða0jbÞ2R0 2 LKg:

In addition to derivative priors, there are priors that I call “partially derivative”.
Consider the following example:

12 A significantly stronger system of defeasible conditionalization results, if we eliminate condition (2) of
the proposed definition. While I believe that the resulting system is reasonable, I will not defend it here.
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Example 2
Let EK be the deductive closure of {a, b}, and let LK be the deductive closure of
PPRI cjað Þ � 0:8; PPRI c_djað Þ � 0:9;f PPRI :cja^bð Þ � 0:8g.

In this case, the set of conclusions licensed by [d-cond] includes:
PPOS cð Þ � 0:8; PPOS c _ dð Þ � 0:9, and PPOS(¬c) ≥ 0.8. While we should regard the
inference to PPOS(c) ≥ 0.8 as defeated, and the inference to PPOS(¬c) ≥ 0.8 as
undefeated, it is less clear what one should believe regarding the range of possible
values for PPOS(c∨d). While PPRI(c∨d|a) ≥ 0.9 permits a defeasible inference to
PPOS(c∨d) ≥ 0.9, and PPOS(c∨d) ≥ 0.9 is consistent with the conclusion that PPOS(¬c)
≥ 0.8, we know that the closely related inference to PPOS(c) ≥ 0.8 is defeated. In fact,
had LK contained only PPRI(c∨d|a) ≥ 0.8 (and not PPRI(c∨d|a) ≥ 0.9), we would have
concluded that it was impossible to draw a justified conclusion regarding the range of
possible values for PPOS(c∨d), save that PPOS(c∨d) ∈ [0, 1] (since PPRI(c∨d|a) ≥ 0.8 is
derivative PPRI(c|a) ≥ 0.8, and our reason for accepting PPOS(c∨d) ≥ 0.8 should stand
or fall with our reason for accepting PPOS(c) ≥ 0.8).

I call priors such as PPRI(c∨d|a) ≥ 0.9, within Example 2, “partially derivative”, since
their content is, in some sense, partially captured by some other prior (as the content of
PPRI(c∨d|a) ≥ 0.9 is partly captured by the content of PPRI(c|a) ≥ 0.8). The following
definition specifies when one prior counts as partially derivative of another:

Definition PPRI ajbð Þ2R is partially derivative of PPRIða0jbÞ2R0
if and only if a

0

strictly implies a; and R � R
0
:

In determining what may be inferred from a partially derivative prior, I propose
that one assume as far as possible that the content of the partially derivative prior is
derivative of the prior that partially captures its content. I thereby propose, in cases
where [d-cond] based on a ‘partially deriving’ prior is defeated, that the greatest lower
posterior probability bound that one accepts on the basis of a corresponding partially
derivative prior be rL−sL, where rL is the greatest lower bound for the partially
derivative prior (in LK), and sL is the greatest lower bound for the partially deriving
prior (in LK). In Example 2, this means that the conclusion that PPOS(c∨d) ≥ 0.1 is
undefeated. Similarly, in cases where [d-cond] based on a ‘partially deriving’ prior is
defeated, I propose that the least upper posterior probability bound that one accepts
on the basis of a corresponding partially derivative prior be 1 – (sU – rU), where rU is
the least upper bound for the partially derivative prior (in LK), and sU is the least
upper bound for the partially deriving prior (in LK).

In the next section, I provide a full and precise treatment of derivative and
partially derivative priors, while articulating general defeat conditions for instances of
[d-cond].

6 General Defeat Conditions

For the purpose of describing general defeat conditions for instances of [d-
cond], it is convenient to have an adjective that describes those elements of LK
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that may serve as a premise to [d-cond], in a given situation. To fill the desired
role, I will say that PPRI(a|β)∈R is “triggered” in K just in case
PPRI ajbð Þ2R 2 LK; b 2 EK, and PPRI ajbð Þ2R =2 Redundant Kð Þ (cf. [9, 10]). Note
that by treating a prior as triggered only if that prior is not redundant, we
thereby treat derivative priors as untriggered and as inappropriate bases for
instances of [d-cond]. For ease of reference, it is also convenient to have
notation that refers to the set of conditional probability statements that are
triggered (relative to a given K).

Definition Triggered Kð Þ¼f PPRI aj bð Þ2R j PPRI aj bð Þ2R 2 LK & b 2 EK &
PPRI aj bð Þ2R =2 Redundant Kð Þg

:

In assessing instances of [d-cond], in the remainder of this article, I will treat
the triggered elements of LK as the bearers of praise and blame, i.e., as being
undefeated or defeated. Use of this shorthand is possible, since a prior condi-
tional probability statement, PPRI(a|β)∈R, that is used as a premise for an
instance of [d-cond], encodes all of the features of that instance of [d-cond]
(as the next two definitions illustrate).

In the case where a conditional probability, PPRI(a|β)∈R, is triggered, it is useful to
have special notation to refer to the element of EK that is responsible for ‘triggering’
that conditional probability.

Definition Precondition PPRI aj bð Þ2Rð Þ ¼ b:

It is also useful to have notation for referring to the conclusion for which a
triggered prior provides a defeasible reason.

Definition Conclusion PPRI aj bð Þ2Rð Þ ¼ PPOS að Þ2R:
The set of conclusions corresponding to a set, Γ, of prior conditional probabilities

will be denoted as follows.

Definition Conclusions Γð Þ ¼ PPOS að Þ2RjPPRI ajbð Þ2R 2 Γf g:
Building on these definitions, I introduce notation in order to refer to the subsets of

the set of triggered priors whose conclusions form minimal inconsistent sets.

Definition min‐incon Kð Þ¼ Γ jΓ�Triggered Kð Þ&Conclusions Γð Þ is minimal inconsistentf g:

Note that (for all K) the defeat of at least one element of each element of min-incon
(K) is both necessary and sufficient for insuring that the set of conclusions of
undefeated instances of [d-cond], based on K, is consistent.

The defeat conditions that I will shortly propose reflect the idea that prior
conditional probabilities with logically weaker preconditions receive priority
when determining which instances of [d-cond] are defeated. The following
notion of preference is central to the mechanism used for classifying instances
of [d-cond] as defeated and undefeated. (Recall that ρ and σ are metalogical
variables ranging over statements of the form PPRI(a|β)∈R.)
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Definition ρ is preferred in Γ,9σ : σ2 Γ&Precondition ρð Þ strictly impliesPrecondition σð Þ:

Definition Preferred Γð Þ ¼ ρjρ is preferred in Γf g:

Setting aside the treatment of partially derivative priors for the moment, a
prior is deemed to be 1-defeated relative to an element of min-incon(K)
according to the following definition, which generalizes the ideas of Section
4 in the obvious way.

Definition ρ is 1‐defeated relative to Γ , ρ 2 Γ & ρ =2 Preferred Γð Þ:

Generalizing ideas from Section 5, the notion of 2-defeat is introduced in order to
properly handle partially derivative priors.

Definition PPRI ajbð Þ2R is 2‐defeated relative to Γ , 9ρ ¼ PPRIða0jbÞ2R0
:

PPRI(a|β)∈R is partially derivative of ρ, ρ is 1-defeated in Γ, and

R � rL � sL; 1� sU � rUð Þ½ �; where
rL ¼ sup rj9S : PPRI aj bð Þ2S 2 LK & S\ 0; r½ � ¼ ;f g;
sL ¼ supfsj9S : PPRIða0 j bÞ2S 2 LK & S\ 0; s½ � ¼ ;g;
rU ¼ inf rj9S : PPRI aj bð Þ2S 2 LK & S\ r; 1½ � ¼ ;f g; and
sU ¼ inffsj9S : PPRIða0 j bÞ2S 2 LK & S\ s; 1½ � ¼ ;g:13

By combining the definitions of 1-defeat and 2-defeat, we have the con-
ditions under which a prior probability statement (understood as representing
a corresponding instance of [d-cond]) is defeated relative to a knowledge
base:

Definition ρ is defeated relative to K ⇔ ∃Γ∈ min-incon(K): ρ is 1-defeated in Γ or ρ
is 2-defeated in Γ.

The set of prior conditional probabilities that are not defeated in K is defined as
follows.

Definition Undefeated Kð Þ ¼ ρjρ 2 Triggered Kð Þ & ρ is not defeated in Kf g:

Among other virtues, it is guaranteed that the set of conclusions of instances of [d-
cond] based on elements of Undefeated(K) is consistent.

13 A stronger system of defeasible conditionalization (complementary to the suggestion made in footnote 11),
would restate the third conjunct of the proposed definiens as: {R � rL � sL þ tL; 1� sU � rUð Þ � 1� tUð Þ½ �,
w h e r e tL ¼ sup tj9S : PPRI a

0 jb� �2S is not 1‐defeated in Γ � PPRI a
0 jb� �2Rg� [ PPRI a

0 jb� �2S� �
& S \ 0; t½ � ¼��

;g, and tU ¼ inf tj9S : PPRI a
0 jb� �2S not 1‐defeated in Γ � PPRI a

0 jb� �2R� �� � [ PPRI a
0 jb� �2S� �

& S\�

t; 1½ � ¼ ;g.
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Theorem ∀K: Conclusions(Undefeated(K)) is consistent.

Proof The preceding theorem follows immediately from the definition of 1-defeat.
That definition guarantees (for all K) that at least one element of each element of min-
incon(K) is 1-defeated (meaning that Conclusions(Undefeated(K)) has no minimal
inconsistent subsets, and thus no inconsistent subsets). (Note that the present theorem
holds even if EK and/or LK are inconsistent.)

The following establishes that the proposed system assigns the correct posterior
probabilities to the deductive consequences of EK.

Theorem ∀K,a: EK entails a ⇒ PPOS(a)∈{1} ∈ Conclusions(Undefeated(K))).

Proof It is sufficient to see that (for all a in EK) PPRI(a|∧EK)∈{1} ∈ LK (since LK is
deductively closed), and PPRI(a|∧EK)∈{1} ∈ Undefeated(K) (assuming that EK and
LK are consistent).

More generally, it is clear that if PPRI is complete, then the system delivers the
same posteriors as the standard Bayesian approach, for in such cases we have, for all
a in Φ, that there exists some r such that PPRI(a|∧EK)∈{r} is LK, and that the instances
of [d-cond] based on such priors are undefeated.

The set of logical consequences of Conclusions(Undefeated(K)) is also a
superset of the set of conclusions licensed by what may be regarded as the
most obvious generalization of the standard Bayesian approach (where the
generalization is given for the purpose of updating on incomplete and/or
imprecise priors). Given a knowledge base, K, the obvious generalization of
the Bayesian approach proposes that an agent accept PPOS(a)∈R just in case
PPRI(a|∧EK)∈R is entailed by LK. I will call this approach to probability
updating “Simple Generalized Bayesianism”, and call the set of posterior
probability statements licensed by Simple Generalized Bayesianism, for a given
knowledge base K, SBayes(K).

Definition SBayes Kð Þ ¼ PPOS að Þ2RjPPRI aj^EKð Þ2R is entailed by LKf g:

Theorem ∀K: SBayes(K) ⊂� {PPOS(a)∈R|PPOS(a)∈R is a logical consequence of
Conclusions(Undefeated(K))}.

Proof It is sufficient to see, for all posteriors, PPOS(a)∈R, that are elements of SBayes
(K), that PPRI(a|∧EK)∈R is in LK (since PPRI(a|∧EK)∈R is entailed by LK), and that
instances of [d-cond] based on priors of the form PPRI(a|∧EK)∈R are always unde-
feated (assuming that EK and LK are consistent).

The system of probability updating proposed here consists in [d-cond], an infer-
ence schema, along with a specification of the conditions under which instances of [d-
cond] are defeated. I propose that undefeated instances of [d-cond] provide undefeat-
ed reasons for belief for agents possessed of corresponding knowledge bases, and that
agents with sufficient deductive abilities should believe the conclusions of
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instances of [d-cond] that are undefeated relative to their respective knowledge
bases.14

The principle of total evidence prescribes that one take account of all one’s
relevant evidence in making judgments of probability. Applied to the problem
of arbitrating between conflicting reasons for belief, the proposed system of
probability updating utilizes a principle that generalizes the principle of total
evidence. The generalized principle prescribes that one favor defeasible infer-
ences that take account of more of one’s available evidence. Armed with this
‘specificity principle’, the proposed system of probability updating represents a
cautious approach to defeasible inference.15 The system licenses acceptance of a
conclusion only if that conclusion is defeasibly justified, and no jointly
conflicting conclusions of equal or greater status are defeasibly justified (where
the status of such conclusions is determined by the specificity principle). While
the proposed system represents a cautious approach to probability updating, the
system also licenses inferences that are bolder than the ones licensed by Simple
Generalized Bayesianism. The proposed system thereby represents an attractive
approach to probability updating with incomplete priors.16

7 Direct Inference and Statistical Induction

In addition to representing an attractive approach to probability updating with
incomplete priors, the proposed system of updating offers a promising frame-
work for systematically representing the prescriptions of direct inference and
statistical induction within a very general framework of rational credence
formation.

An account of statistical induction codifies and explains the justificatory basis of
inferences that move from a premise, describing the incidence of some characteristic
among a sample, to a conclusion that states that the incidence of the chosen charac-
teristic among a respective population (from which the sample was drawn) is likely to
be very similar to its incidence among the sample. Schematically, such defeasible
inferences may be represented as follows:

From S � G and freq FjSð Þ ¼ r infer that PPOS freq FjGð Þ � rð Þ is high:
An underappreciated fact about statistical induction is its ‘reducibility’ to so called

“direct inference” (cf. [18–20, 27, 40, 50]). A direct inference proceeds from a

14 Defeated instances of [d-cond] do not provide undefeated reasons for belief for agents possessed of
corresponding knowledge bases. But, in some cases, there may be distinct instances of [d-cond] supporting
the same conclusion, and while one such instance may be defeated, another may be undefeated. So it is
possible for an agent to have a defeated reason for accepting a posterior probability, while at the same time
possessing an undefeated reason for accepting the very same posterior probability.
15 I use the term “cautious” here, in order to avoid confusion. I would have liked to use the term “skeptical”,
in order to make an explicit connection to the distinction between skeptical and credulous reasoners, as
discussed in [44].
16 I leave the possibility open that a suitably ideal agent (with a knowledge base K) might have reason to
accept a proper superset of the set of logical consequences of Conclusions(Undefeated(K)). One possibility
is that there are cases where an inference to PPOS(β)∈R is defeated, but it is still reasonable to accept that
PPOS(β)∈R′, for some set of values of R′, where R ⊂ R′.
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premise stating that the frequency17 with which members of a given reference class, F,
are members of a respective target class, G, is r, and a premise stating that a given object,
ϕ, is an element of F, and yields the conclusion that the probability thatϕ is a member of
G is r. Schematically, this sort of defeasible inference may be represented as follows:

From f 2 F and freq GjFð Þ ¼ r infer that PPOS f 2 Gð Þ ¼ r:

The reduction of statistical induction to direct inference proceeds from a theorem
that describes the propensity of subsets of a set to resemble the set regarding the
incidence of any characteristic.

Theorem 8F;G : 8u;v>0 : 9n : jw >j jFj>n ) freq freq Gjxð Þ �u freq GjFð Þjx�Fð Þ > 1�v:18

The present theorem is applicable in generating the major premises for direct
inferences of the following sort.

From S ⊆ F and freq freq Gjxð Þ � freq GjFð Þjx � Fð Þ � 1 infer that

PPOS freq GjSð Þ � freq GjFð Þð Þ � 1:

And from the conclusion that PPOS freq GjSð Þ � freq GjFð Þð Þ � 1, one may deduce
that PPOS freq GjFð Þ � rð Þ � 1, assuming that one knows that freq(G|S) = r (where S is
one’s sample of observed Fs). If we suppress mention of the premise
freq freq Gjxð Þ � freq GjFð Þjx � Fð Þ � 1, then the preceding yields the following
form of statistical induction:

From S � F and freq GjSð Þ ¼ r infer that PPOS freq GjFð Þ � rð Þ � 1:

So far I have described the manner in which statistical induction is, in some sense,
reducible to direct inference. The next task is to show how and why the account of
probability updating proposed in this article is apt for encoding the prescriptions of direct
inference (and thereby the prescriptions of statistical induction). The proposal is to encode
the prescriptions of direct inference via prior conditional probability statements that are
akin to Lewis’s principal principle [23]. In order to correctly express the content of such
priors, I now proceed upon the assumption that the language,Φ, is rich enough to express
relative frequencies, statements of set membership, and statements of set inclusion:

(a) PPRI f 2 Gjf 2 F ^ freq GjFð Þ ¼ rð Þ ¼ r:

Assuming that the preceding prior is an element of LK, one may apply [d-cond] to
infer that PPOS(ϕ∈G) = r, in the case where EK contains ϕ∈F and freq(G|F) = r. Of
course, such direct inferences are defeasible. Typically, accounts of direct inference
prescribe that one judge the probability that a given object is an element of a

17 While many, including Venn [47], Reichenbach [34], Kyburg [20], and Kyburg and Teng [21], have
assumed that the major premises for direct inference are statements of frequency or limiting frequency,
other proposals have been made, in [1, 32], and [42]. I here officially leave the question open, concerning
what sorts of statistical statements may serve as major premises for direct inference.
18 The present theorem is from ([32], p. 71). Similar theorems that are also relevant to the reduction of
statistical induction to direct inference are found in other sources, including [27].
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respective target class by making a direct inference based on the narrowest relevant
reference class for which one has reliable frequency information (cf. [1, 20, 21, 32,
34, 42, 47]). This idea is easily represented within the proposed system, by the
inclusion of priors of the following form:

(b) PPRI f 2 Gjf 2 F
0 ^ F

0�F ^ freq GjFð Þ ¼ r ^ freq GjF0� � ¼ s
� � ¼ s:

In the case where LK contains (a) and (b), and EK contains ϕ∈F′, F′ ⊂ F, freq(G|F) = r,
and freq(G|F′) = s, the proposed system prescribes the defeat of [d-cond] based on (a),
while permitting an inference, by appeal to (b), to the conclusion that PPOS(ϕ∈G) = s.
The proposed system also yields what is generally regarded as the correct prescription
concerning cases where one has relevant statistics for two reference classes, and neither
reference class is narrower than the other. Suppose, for example, that LK contains (a),
along with the following prior:

(c) PPRI f 2 Gjf 2 F
0 ^ freq GjF0� � ¼ s

� � ¼ s:

Now in a case where EK containsϕ∈F, ϕ∈F′, freq(G|F) = r, and freq(G|F′) = s, [d-cond]
generates a defeasible reason for inferring PPOS(ϕ∈G) = r, and a defeasible reason for
inferring PPOS(ϕ∈G) = s. But in the case where EK contains neither F′ ⊂ F nor F ⊂ F′ (and
r ≠ s), the inferences based on (a) and (c) are mutually defeating, and no informative
conclusion about the value of PPOS(ϕ∈G) is licensed by appeal to (a) or (c).

The preceding is intended as a sketch of how the prescriptions of direct inference
could be encoded within the proposed system of probability updating.19 It is noteworthy
that such an approach to direct inference is not possible within the standard Bayesian
system of probability updating. Within that approach, conditionalization always pro-
ceeds from a prior, PPRI(a|β) = r, where β incorporates the agent’s complete body of
evidence, thereby making it practically (if not in principle) impossible to represent the
prescriptions of direct inference within the system.

8 Conclusion

In the present article, I proposed a generalization of the standard Bayesian approach
to probability updating. Unlike the standard Bayesian approach, the proposed system
is applicable in cases where an agent’s prior probabilities are incomplete or imprecise.
The inferences licensed by the proposed system are justifiable by appeal to a modest
elaboration of Carnap’s principle of total evidence. Like the standard Bayesian frame-
work, the proposed framework is very general, promising to reduce the prescriptions of
rational credence formation to the prescription that one update one’s personal probabil-
ities by a form of conditionalization, and to prescriptions concerning the choice of prior
probabilities. Because the proposed system permits conditionalization on propositions

19 At present it would be a mistake to claim that anyone has succeeded in producing an adequate
characterization of the correct principles of direct inference. While the problem of characterizing the correct
principles of direct inference is unsolved (perhaps due to insufficient attention), I am optimistic that it is
possible to articulate such principles. For recent work, see [41] and [42].
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that do not encode an agent’s complete body of evidence, the proposed system allows for
the possibility of encoding the prescriptions of direct inference and statistical induction
by the selection of intuitively reasonable prior probabilities.20
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